3.7.3 \(\int \frac {(a+b \sec (c+d x))^4}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [603]

Optimal. Leaf size=208 \[ \frac {8 a b \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {4 a b \left (a^2-6 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

-2/3*b^2*(a^2-b^2)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/3*a^2*(a+b*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)-4/3*
a*b*(a^2-6*b^2)*sin(d*x+c)*sec(d*x+c)^(1/2)/d+8*a*b*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*(a^4+18*a^2*b^2+b^4)*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 208, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3926, 4161, 4132, 3856, 2720, 4131, 2719} \begin {gather*} -\frac {2 b^2 \left (a^2-b^2\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {4 a b \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d}+\frac {8 a b \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))^2}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(3/2),x]

[Out]

(8*a*b*(a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(a^4 + 18*a^2*b^2 +
 b^4)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (4*a*b*(a^2 - 6*b^2)*Sqrt[Sec[c
 + d*x]]*Sin[c + d*x])/(3*d) - (2*b^2*(a^2 - b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^2*(a + b*Sec[c
 + d*x])^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4161

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f
*x])^n/(f*(n + 2))), x] + Dist[1/(n + 2), Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1
) + A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C
, n}, x] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^4}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2}{3} \int \frac {(a+b \sec (c+d x)) \left (5 a^2 b+\frac {1}{2} a \left (a^2+9 b^2\right ) \sec (c+d x)-\frac {3}{2} b \left (a^2-b^2\right ) \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx\\ &=-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4}{9} \int \frac {\frac {15 a^3 b}{2}+\frac {3}{4} \left (a^4+18 a^2 b^2+b^4\right ) \sec (c+d x)-\frac {3}{2} a b \left (a^2-6 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx\\ &=-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4}{9} \int \frac {\frac {15 a^3 b}{2}-\frac {3}{2} a b \left (a^2-6 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (a^4+18 a^2 b^2+b^4\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=-\frac {4 a b \left (a^2-6 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\left (4 a b \left (a^2-b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (\left (a^4+18 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {4 a b \left (a^2-6 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\left (4 a b \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {8 a b \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {4 a b \left (a^2-6 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}-\frac {2 b^2 \left (a^2-b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.73, size = 130, normalized size = 0.62 \begin {gather*} \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (24 a b \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (a^4+18 a^2 b^2+b^4\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {\left (a^4+2 b^4+24 a b^3 \cos (c+d x)+a^4 \cos (2 (c+d x))\right ) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(24*a*b*(a^2 - b^2)*EllipticE[(c + d*x)/2, 2] + 2*(a^4 + 18*a^2*b^2 + b
^4)*EllipticF[(c + d*x)/2, 2] + ((a^4 + 2*b^4 + 24*a*b^3*Cos[c + d*x] + a^4*Cos[2*(c + d*x)])*Sin[c + d*x])/Co
s[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(776\) vs. \(2(238)=476\).
time = 0.19, size = 777, normalized size = 3.74

method result size
default \(\text {Expression too large to display}\) \(777\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*(-8*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6*a^4+8*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(a^3+6*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(a^4+12*a*b^3+b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^4+18*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b^2+EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*b^4-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3*b+12*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))*a*b^3)*sin(1/2*d*x+1/2*c)^2+a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+18*b^2*a^2*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))*a^3*b+12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.50, size = 242, normalized size = 1.16 \begin {gather*} \frac {\sqrt {2} {\left (-i \, a^{4} - 18 i \, a^{2} b^{2} - i \, b^{4}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, a^{4} + 18 i \, a^{2} b^{2} + i \, b^{4}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, \sqrt {2} {\left (-i \, a^{3} b + i \, a b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, \sqrt {2} {\left (i \, a^{3} b - i \, a b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (a^{4} \cos \left (d x + c\right )^{2} + 12 \, a b^{3} \cos \left (d x + c\right ) + b^{4}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*a^4 - 18*I*a^2*b^2 - I*b^4)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x
+ c)) + sqrt(2)*(I*a^4 + 18*I*a^2*b^2 + I*b^4)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*
x + c)) - 12*sqrt(2)*(-I*a^3*b + I*a*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d
*x + c) + I*sin(d*x + c))) - 12*sqrt(2)*(I*a^3*b - I*a*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPIn
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(a^4*cos(d*x + c)^2 + 12*a*b^3*cos(d*x + c) + b^4)*sin(d*x +
c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{4}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**4/sec(d*x+c)**(3/2),x)

[Out]

Integral((a + b*sec(c + d*x))**4/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^4}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^4/(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + b/cos(c + d*x))^4/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________